Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations
نویسندگان
چکیده
A space-time discontinuous Galerkin finite element method for the compressible Navier-Stokes equations is presented. We explain the space-time setting, derive the weak formulation and discuss our choices for the numerical fluxes. The resulting numerical method allows local grid adaptation as well as moving and deforming boundaries, which we illustrate by computing the flow around a 3D delta wing on an adapted mesh and by simulating the dynamic stall phenomenon of a 2D airfoil in rapid pitch-up maneuver.
منابع مشابه
Efficient Time Integration for Discontinuous Galerkin Method for the Unsteady 3d Navier-stokes Equations
We look at adaptive time integration in the context of discontinuous Galerkin methods for the three dimensional unsteady compressible Navier-Stokes equations. Several explicit and implicit schemes will be compared. Philipp Birken, Gregor Gassner, Mark Haas and Claus-Dieter Munz
متن کاملSymmetric Interior Penalty Dg Methods for the Compressible Navier–stokes Equations I: Method Formulation
In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier–Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint sec...
متن کاملAn Output-Based Adaptive Hybridized Discontinuous Galerkin Method on Deforming Domains
In this paper we present an output-based adaptive method for unsteady simulations of convection-dominated flows on deformable domains. The target discretization is the hybridized discontinuous Galerkin method (HDG), which offers potential computational savings at high order compared to the discontinuous Galerkin (DG) method. Mesh deformation is achieved through an arbitrary Lagrangian-Eulerian ...
متن کاملPseudo-time stepping methods for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
The space-time discontinuous Galerkin discretization of the compressible NavierStokes equations results in a non-linear system of algebraic equations, which we solve with a local pseudo-time stepping method. Explicit Runge-Kutta methods developed for the Euler equations are unsuitable for this purpose as a severe stability constraint linked to the viscous part of the equations must be satisfied...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 217 شماره
صفحات -
تاریخ انتشار 2006